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● This is not (just) a technical challenge, but interesting.

● Are some parts of language closer to the world than other parts? 
Does this show in DS? Can we exploit this?

Some expressions are used more rigidly than others... (Kripke, ‘80)
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● Let’s compare two kinds of representations of category concepts:

– Predicate-based: 
Word vector of a predicate that is used to denote the category.

– Name-based: 
Centroid of the word vectors of names of instances of the 
category.

● Evaluation against human judgments of category relatedness.

E.g., for Scientist, the word vector of “scientist”

E.g., the mean of vectors for “Albert Einstein”, “Emmy Noether”, ...
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● The Instantiation dataset (Boleda, Gupta, and Padó, 2017, EACL):
– e.g., <Emmy Noether, scientist>, <Edinburgh, capital>
– derived from WordNet’s ‘instance hyponym’ relation.

● We focus on the 159 categories that have at least 5 entities.

● As DS representations of the entities’ names and categories’ 
predicates we use the Google News embeddings (Mikolov, Sutskever, 

et al., 2013, ANIPS).
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Evaluation: gathering human judgments

Following Bruni, Tran and Baroni’s MEN benchmark (2012, JAIR):

● We semi-randomly sampled 1000 category pairs (out of 12.5K).
● ‘Comparative’ task: which pair of categories are more related 

to each other?
● Also same way of computing aggregated ‘relatedness’ scores.
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Main result

● Spearman (ranking) correlations between:
– cosine similarities from Name-based / Predicate-based

and
– aggregate scores from our human judgments

● Result:
– Predicate-based:  0.56
– Name-based:       0.74
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Entities need to be representative

● E.g., the Name-based model overestimates surgeon ~ siege...
● Instances of surgeon in the Instantiation dataset:

– William Cowper
– James Parkinson
– Alexis Carrel

– Walter Reed
– William Beaumont
– Joseph Lister

Wrote “the siege of chester” (?)

Involved in WW1

Members of US military corps
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Discussion

● Main finding:
– Name-based representations of category concepts align better 

with ‘the world’ than Predicate-based representations.
– Even a small number of (representative) names can be enough.

● Outlook:
– Not every category has named instances...
– NLP relevance? Vs. sense disambiguation? Contextualized word 

embeddings (ELMo, BERT, …)?
– Cognitive relevance? E.g., prototype theory?
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Why definitions?

● The same words can often be used to denote various categories.
● To properly evaluate the Name-based approach, the human 

judgments should be about the categories as intended by the 
Instantiation dataset we use.

● (Would be good practice more generally – e.g., vs. the good 
subject effect.)

● This may give the Predicate-based approach a disadvantage…
– but this disadvantage is not an unfair one.
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