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Discussion

▶ Testing pairs of adjectives, e.g., warm/hot:

 

 
 

 

▶ They find scalar diversity (➥).
 

▶ And consider various explanatory factors:

John says:     "the {sand / soup / ...} is warm".  
Would you conclude from this that, according to 
John, it is not hot?  [Yes/No]

(LSA)

Method
▶ We fit linear models on Van Tiel et al.'s data from exp.2, 
     comparing notions of semantic similarity (see A⬋):
     • context-insensitive: LSA, ELMO-0, vs.

     • context-sensitive: ELMo-1,2,3.
 

▶ Hypothesis: The context-sensitive notions explain more.

1 Previous results on scalar diversity are 

explained better by a notion of semantic 

similarity if it is context-sensitive.
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LSA? ELMo?
▶ LSA = Latent Semantic Analysis [3]; 

     ELMo = Embeddings from Language Models [4].
 

▶ Both represent words as high-dimensional vectors, where 

     similarity = cosine of their angle.
 

▶ What is different is how the vectors are computed:

     • LSA: dimensionality reduction on co-occurrence counts

     • ELMo: neural network for predicting the next word. 
 

▶ Specifically, ELMo is a 3-layer recurrent neural network:

Results
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▶ Models for open-class items only (removes 4):

▶ How come semantic relatedness shows no effect?
 

▶ LSA (see A⬇) is too coarse-grained, assigning similarity 

     scores to words regardless of their context.
 

▶ But real semantic similarity is affected by what is likely 

     relevant, given other words in the sentence:
 

  (1)  "The sand is warm." → not hot

         Likely QUD: "Is the sand safe to walk on?" 

  (2)  "The soup is warm." ↛ not hot

         Likely QUD: "Is it a warm or a cold soup?"

  (3)  "The salary is adequate." ↛ not good

         Likely QUD: "Does it meet one's needs?"

  (4)  "The salary is good."

         Likely QUD: "How does it compare to similar jobs?"
 

▶ We need a notion of semantic similarity that reflects this.

McNally (2017)

Some confirmation of McNally's proposal, but many questions:
 
▶ What makes ELMo-1,2,3 better than LSA?
     • ELMo doesn't seem to need to distinguish sentences;
     • But context-sensitivity somehow helps (compare ELMo-0).
  
▶ Why is the effect of ELMo-1,2,3 negative?
     • Alternatives should be similar (lest they be unavailable) but not 
      too similar (lest they won't be excluded); [1].
     • Perhaps the task itself makes alternatives available anyhow, 
       leaving only the latter, negative effect.
 
▶ Need a closer look at the data, e.g.:
      • For (1)/(2), Van Tiel et al.'s data doesn't go in the direction 
        suggested; but for (3)/(4) it does.
 
▶ How do Formal Semantics/Pragmatics relate to LSA, ELMo, 
     and other vector-space models of meaning?

■ experiment 1

■ experiment 2
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▶ What do we see?

   • Larger, significant effects for ELMo-1,2,3.

   • Even with other factors (and, less significantly, with closed-class items).
 

▶ But what's this?
   • Slightly larger effect for ELMo-2,3 when sentences of the
      same pair (e.g., (1)/(2)) are averaged prior to model-fit.


