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1. Distributional semantics

Work with Abhijeet Gupta, Sebastian Padó & Gemma Boleda.
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Language and the world align only roughly

This is not (just) a technical challenge, but interesting.
● Are some parts of language closer to the world than other parts? 
● Does this show in Distributional Semantics? 
● Can we exploit this?

Some expressions are used more rigidly than others... (Kripke, ‘80)
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Conclusions

● Name-based representations of category concepts are 
better.

● We should try to understand what our computational 
models do/don’t  represent.

● Crucial distinction: linguistic vs. extralinguistic concepts.

(cf. semantics/pragmatics)
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2. Discourse expectations
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2.1. Evoked questions

Published & ongoing work with Hannah Rohde, Laia 
Mayol and Jacopo Amidei.
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Experiment: Predictability ~ Implicitness

Background:
● Uniform Information Density (Frank and Jaeger, 2008);
● Lexical predictability leads to acoustic reduction (Jurafsky et al., 2001; 

Arnold 1999, 2001)
● Applied to discourse structure by Asr and Demberg (2012).

Our approach:
● Our source texts came from TED-MDB (Zeyrek et al. 2018), 

annotated for explicit and implicit discourse connectives.
● TED-Q’s ANSWERED scores ~ discourse structure predictability.



81

Main finding

Kruskal-Wallis H-test: p=6.8e-7

Dunn’s post-hoc test (Bonferroni):
- Implicit, Explicit: 0.044
- Implicit, NoRel:   4.3e-07
- (Explicit, NoRel:   0.003)



82

Main finding

Kruskal-Wallis H-test: p=6.8e-7

Dunn’s post-hoc test (Bonferroni):
- Implicit, Explicit: 0.044
- Implicit, NoRel:   4.3e-07
- (Explicit, NoRel:   0.003)

Kruskal-Wallis H-test: p=0.0001

Dunn’s post-hoc test (Bonferroni):
- Implicit, Explicit: 0.00023
- Implicit, NoRel:   0.025
- (Explicit, NoRel:   1.000)



83

Main finding

Kruskal-Wallis H-test: p=6.8e-7

Dunn’s post-hoc test (Bonferroni):
- Implicit, Explicit: 0.044
- Implicit, NoRel:   4.3e-07
- (Explicit, NoRel:   0.003)

Restricted to the top 25% 
places with highest agreement 

about the evoked questions.

Kruskal-Wallis H-test: p=0.0001

Dunn’s post-hoc test (Bonferroni):
- Implicit, Explicit: 0.00023
- Implicit, NoRel:   0.025
- (Explicit, NoRel:   1.000)
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Next steps

● Computational modeling  (Westera, Amidei & Mayol, submitted to CoLing)

● Look into the ‘highlighting’ data – relation to information structure.

● Maybe getting more/better/controlled data.
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2.2. Referent predictability

Ongoing work with Xixian Liao, Laura Aina, Laia Mayol 
and Gemma Boleda. 
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Referent predictability and referring expression choice

Background: 
● Again: Uniform Information Density (Frank and Jaeger, 2008).
● Applied to referring expressions (e.g., Stevenson et al., 1994; Tily & 

Piantadosi 2009; Kehler & Rohde 2013); no consensus.

Idea:
● Use coreference resolution model to compute a proxy for referent 

predictability.
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Coreference resolution model

Sue was at the protest with Bill and his daughter. She called me later.

[new entity]
0.1

0.5

0.1
0.1

0.2

0.13

0.32

0.15
0.15

0.25

● I used the SpanBERT model Joshi et al. (2019).
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referring expression visible

Results (pilot)

ANOVA: p=1e-19

Tukey’s HSD:
- (PRON), (DET,NOUN):  0.001
- (PRON), (PROPN): 0.001
- (DET,NOUN), (PROPN): 0.9

POS of referring expression

referring expression masked
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Conclusion

● Pronouns have more expected antecedents (according to this model).

● Plausibly use machine learning models as a proxy for human processing.

Next:

● Explore some different implementations of this idea.

● Compare more POS, different genres, fine-grained distinctions (e.g., 
definite/indefinite; subject/object), different languages (e.g., Pro-drop).
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Summary
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– neural networks vs. linguistic theory.
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– implicit questions
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Entities need to be representative

● E.g., the Name-based model overestimates surgeon ~ siege...
● Instances of surgeon in the Instantiation dataset:

– William Cowper
– James Parkinson
– Alexis Carrel
– Walter Reed
– William Beaumont
– Joseph Lister

Wrote “the siege of chester” (?)

Involved in WW1

Members of US military corps
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Correlation with polysemy
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Which questions are ‘the same’?

● http://mwestera.humanities.uva.nl/crowdsource/evoque.html 

http://mwestera.humanities.uva.nl/crowdsource/evoque.html
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ANSWERED & RELATED

 ← Spearman 0.17 →


	Slide 1
	page2 (1)
	page2 (2)
	page2 (3)
	page2 (4)
	page2 (5)
	page2 (6)
	Slide 8
	page4 (1)
	page4 (2)
	page4 (3)
	page4 (4)
	page4 (5)
	page4 (6)
	page4 (7)
	page4 (8)
	page5 (1)
	page5 (2)
	page5 (3)
	page5 (4)
	page5 (5)
	page6 (1)
	page6 (2)
	page6 (3)
	page7 (1)
	page7 (2)
	page7 (3)
	page7 (4)
	page7 (5)
	page7 (6)
	page7 (7)
	page8 (1)
	page8 (2)
	page8 (3)
	page8 (4)
	page8 (5)
	page8 (6)
	page8 (7)
	page8 (8)
	page8 (9)
	page9 (1)
	page9 (2)
	page10 (1)
	page10 (2)
	page11 (1)
	page11 (2)
	page11 (3)
	page11 (4)
	page11 (5)
	Slide 50
	page13 (1)
	page13 (2)
	page13 (3)
	page13 (4)
	page13 (5)
	page13 (6)
	page13 (7)
	page13 (8)
	Slide 59
	page15 (1)
	page15 (2)
	page15 (3)
	page15 (4)
	page15 (5)
	page15 (6)
	page15 (7)
	page15 (8)
	page15 (9)
	page15 (10)
	page15 (11)
	page15 (12)
	page15 (13)
	page16 (1)
	page16 (2)
	page17 (1)
	page17 (2)
	page17 (3)
	page17 (4)
	page17 (5)
	page17 (6)
	page18 (1)
	page18 (2)
	page18 (3)
	Slide 84
	Slide 85
	page21 (1)
	page21 (2)
	page21 (3)
	page21 (4)
	page22 (1)
	page22 (2)
	page22 (3)
	page22 (4)
	page22 (5)
	page22 (6)
	page22 (7)
	page22 (8)
	page22 (9)
	page22 (10)
	page22 (11)
	page22 (12)
	page22 (13)
	page22 (14)
	page22 (15)
	page22 (16)
	page23 (1)
	page23 (2)
	page23 (3)
	page24 (1)
	page24 (2)
	page24 (3)
	page24 (4)
	Slide 113
	Slide 114
	Slide 115
	page28 (1)
	page28 (2)
	page29 (1)
	page29 (2)
	page29 (3)
	page29 (4)
	page29 (5)
	page29 (6)
	Slide 124
	Slide 125
	Slide 126

