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1. Distributional semantics

Work with Abhijeet Gupta, Sebastian Padé & Gemma Boleda.
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Main results

Table 3: Main results of Experiment 1 (Spearman correlation coefficients).

all match unclear | within-domain between-domain
number of pairs | 981 626 355 474 507
NOUNBASED 0.56 0.62 0.45 0.57 0.64
NAMEBASED 0.74 0.73 0.75 0.68 0.69
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Conclusions

 Name-based representations of category concepts are
better.

* We should try to understand what our computational
models do/don’t represent.

* Crucial distinction: linguistic vs. extralinguistic concepts.

(ct., semantics/pragmatics)
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2. Discourse expectations
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Main motivation

“I went to Sue and Bob’s place but

they weren’t horne.”

Who were at the protest?

Whete was Sue?
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2.1. Evoked questions

Published & ongoing work with Hannah Rohde, Laia
Mayol and Jacopo Amidei.
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The boss decided to fire me this time.

p Please enter another question the text evokes for you at this point.
(The text so far must not yet contain an answer to the question!)

(What else made it the worst day? )

» In the text, highlight the main word or short phrase that evokes this
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Today was the worst day of my life. lFiESEioRall, my
alarm didn’t go off, so I arrived late at work again.
The boss decided to fire me this time.

p Please enter another question the text evokes for you at this point.
(The text so far must not yet contain an answer to the question!)

(What else made it the worst day? )

» In the text, highlight the main word or short phrase that evokes this
question.
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The TED-Q dataset (Westera, Mayol & Rohde, 2020 LREC)

Elicitation phase:

Comparison phase:

texts:

words:

probe points:
participants/probe:
participants:
questions:
answers:
ANSWERED mean:
ANSWERED std:

6
6975
460
5+
111
2412
1107
2.50
1.51

question pairs:
participants/pair:
participants:
judgments:
RELATED mean:
RELATED std:
Agreement (AC5):

4516
6

163
30412
1.21
0.79
46
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Experiment: Predictability ~ Implicitness

Background:
* Uniform Information Density (Frank and Jaeger, 2008);

* Lexical predictability leads to acoustic reduction (Jurafsky et al., 2001;
Arnold 1999, 2001)

* Applied to discourse structure by Asr and Demberg (2012).

Our approach:

e Our source texts came from TED-MDB (Zeyrek et al. 2018),
annotated for explicit and implicit discourse connectives.

 TED-Q’s ANSWERED scores ~ discourse structure predictability.
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Main Finding
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Kruskal-Wallis H-test: p=6.8e-7

Dunn’s post-hoc test (Bonferroni):

- Implicit, Explicit: 0.044
- Implicit, NoRel: 4.3e-07
- (Explicit, NoRel: 0.003)
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Next steps

 Computational modeling (Westera, Amidei & Mayol, submitted to CoLing)
* Look into the ‘highlighting’ data - relation to information structure.

* Maybe getting more/better/controlled data.
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2.2. Referent predictability

Ongoing work with Xixian Liao, Laura Aina, Laia Mayol
and Gemma Boleda.




Referent predictability and referring expression choice
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e Again: Uniform Information Density (Frank and Jaeger, 2008).
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Referent predictability and referring expression choice

Background:
e Again: Uniform Information Density (Frank and Jaeger, 2008).

* Applied to referring expressions (e.g., Stevenson et al., 1994; Tily &
Piantadosi 2009; Kehler & Rohde 2013); no consensus.

88



Referent predictability and referring expression choice

Background:
e Again: Uniform Information Density (Frank and Jaeger, 2008).

* Applied to referring expressions (e.g., Stevenson et al., 1994; Tily &
Piantadosi 2009; Kehler & Rohde 2013); no consensus.

|dea:

* Use coreference resolution modelto compute a proxy for referent
predictability.
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Coreference resolution model
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Coreference resolution model
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Coreference resolution model

[new entity]

0.5

Sue was at the protest with Bill and his daughter. il called me later.
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Coreference resolution model

[new entity]

0.32

Sue was at the protest with Bill and his daughter. il called me later.
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Coreference resolution model

[new entity]

0.32

Sue was at the protest with Bill and his daughter. il called me later.

| used the SpanBERT model Joshi et al. (2019).
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Results (pilot)

referring expression visible

p(correct antecedent)

(PROPN,) (PRON,)
POS of referring expression

(DET, NOUN)
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Results (pilot)

referring expression masked

p(correct antecedent)

1.0

0.8 -

0.6 -
ANOVA: p=1e-19

0.4- OVA: p=le
Tukey's HSD:

0.2 - (PRON), (DET,NOUN): 0.001
- (PRON), (PROPN): 0.001
- (DET,NOUN), (PROPN): 0.9

(PROPN,) (PRON,) (DET, NOUN)
POS of referring expression 108



Conclusion

* Pronouns have more expected antecedents (according to this model).
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Conclusion

* Pronouns have more expected antecedents (according to this model).

* Plausibly use machine learning models as a proxy for human processing.

Next:
 Explore some different implementations of this idea.

« Compare more POS, different genres, fine-grained distinctions (e.g.,
definite/indefinite; subject/object), different languages (e.qg., Pro-drop).
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Confetti plots

predicate-based model
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Entities need to be representative

* E.qg.,the Name-based model overestimates surgeon ~ siege...
* Instances of surgeon in the Instantiation dataset:
- William Cowper

- James Parkinson < Wrote *the siege of chester’ (?)
- Alexis Carrel
- Walter Reed < TIpvolved in WW1

- William Beaumont

~ Joseph Lister 2 Members of Us military corps
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Correlation with polysemy

Table 4: Spearman correlations between model error (absolute rank difference) and number of synsets,
with p-values in parenthesis.

all match unclear within-domain between-domain
number of pairs 981 626 399 484 497
NOUNBASED 0.13 (2¢—5) | 0.11 (0.007) 0.16 (0.002) 0.21 (3e—6) 0.043
NAMEBASED 0.023 0.078 -0.053 0.024 0.030
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Which questions are ‘the same’?

* http://mwestera.humanities.uva.nl/crowdsource/evoque.html

» Please read the snippet:

[...] Who here knows that in many cities across the United States it is now illegal to sit on the
sidewalk, to wrap oneself in a blanket, to sleep in your own car, to offer food to a stranger?

» Next, compare the questions it evoked:

Questions: How related are target (T) and comparison (C) question?

Which are some cities who have these
laws?

Comparison (C): Why is it illegal to offer food to @ @ C%) © 5
someone? ™ d

Comparison (C): What cities are affected? @ QD % ©® ?
Comparison (C): Why would it be illegal to offer food to a @ @1) % @ -
stranger? @ '

) ~ Why would it be against the law to be @ @ % © 5
Comparison (C): Kind? @ £

Target (T):
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http://mwestera.humanities.uva.nl/crowdsource/evoque.html

ANSWERED & RELATED

ANSWERED « Spearman 0.17 - RELATED

1000

1000-
800 - 800 -
600 - 600 -
400 400

200 200

0_
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